Orthogonal Polynomials on (0,1) with kernel 1/x

I don’t know whether it’s a known result.

Let {Pn(x)}\{P_n(x)\} be orthogonal polynomials on (0,1)(0,1) with measure dlogxd\log x such that Pm,Pn:=01dlogxPm(x)Pn(x)=δmn2m, \langle P_m,P_n\rangle := \int_0^1 d\log x\, P_m(x)P_n(x)=\frac{\delta_{mn}}{2m}, with P1(x)=xP_1(x)=x , Pn(0)=0P_n(0)=0 and Pn(1)=1P_n(1)=1 .

We can directly construct {Pn}\{P_n\} from x,x2,x, x^2, \cdots by the Gram–Schmidt process, which gives us a recursion relation xddx(Pn+1Pn)=(n+1)Pn+1+nPn, x\frac{d}{dx}(P_{n+1}-P_n)=(n+1)P_{n+1}+nP_n, and it’s not hard to prove that Pn(x)=k=1n(1)nk(nk)(n+k1n)xk. P_n(x)=\sum_{k=1}^n(-1)^{n-k}{n\choose k}{n+k-1\choose n} x^k. It’s also easy to prove the following identities: Qn(x):=0xdlogtPn(t)=(1)n1n(1Pn(1x)), Q_n(x):=\int_0^x d\log t\, P_n(t)=\frac{(-1)^{n-1}}{n}(1-P_n(1-x)), Pn,xk=1n+ki=1k1nin+i=(n1)(nk+1)(n+1)(n+k),Pn,1=(1)n+1n, \langle P_n,x^k\rangle =\frac{1}{n+k}\prod_{i=1}^{k-1}\frac{n-i}{n+i}=\frac{(n-1)\cdots (n-k+1)}{(n+1)\cdots (n+k)},\quad \langle P_n,1\rangle =\frac{(-1)^{n+1}}{n}, (xx+n)Pn=2k=1nkPk,nQn+Pn=2k=1n(1)nkPk, (x\partial_x+n) P_n=2\sum_{k=1}^n k P_k,\quad n Q_n+P_n=2\sum_{k=1}^n (-1)^{n-k} P_k, nlog(x),Pn=nQn,1=(1)n+1(1n2k=1n1k),log(1x),Pn(x)=1n2, n\langle \log(x),P_n\rangle = -n\langle Q_n,1\rangle =(-1)^{n+1}\biggl(\frac{1}{n}-2\sum_{k=1}^n\frac{1}{k}\biggr),\quad \langle \log(1-x),P_n(x)\rangle = -\frac{1}{n^2}, nxlogx,Pn(x)=(1)n2(1n11n+1),xlogx,P1(x)=14 n\langle x\log x,P_n(x)\rangle = \frac{(-1)^{n} }{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right),\quad \langle x\log x,P_1(x)\rangle=-\frac 14

Buwai Lee

Buwai Lee

交换图都不会画的魔法师