The Color Structure of sp(2N) Gauge Field Theory

For any Tsp(2N)T\in \mathfrak{sp}(2N) , it is a (2N)×(2N)(2N)\times (2N) matrix constrained by the equation ΩT+TTΩ=0, \Omega T+T^{\mathsf T}\Omega=0, where Ω=(0ININ0). \Omega=\begin{pmatrix} 0&I_N\\ -I_N&0 \end{pmatrix}. Therefore, the dimension of sp(2N)\mathfrak{sp}(2N) is N(2N+1)N(2N+1) . If we choose a basis {Ta  :  1aN(2N+1)}\{T^a\;:\;1\leq a\leq N(2N+1)\} of sp(2N)\mathfrak{sp}(2N) such that Tr(TaTb)=δab, \operatorname{Tr}(T^aT^b)=\delta^{ab}, then (Ta)ji(Ta)lk=12(δliδjks(i)s(j)δı~kδȷ~l), (T^a)^i_j(T^a)^k_l=\frac{1}{2}\bigl(\delta^i_l\delta^k_j- s(i)s(j)\delta^{\tilde \imath k}\delta_{\tilde \jmath l}\bigr), where ı~=i+NZ2N\tilde\imath=i+N\in \mathbb Z_{2N} and s(i)={11iN,1N+1i2N. s(i)=\begin{cases} 1&1\leq i\leq N,\\ -1&N+1\leq i\leq 2N. \end{cases} Therefore, Tr(ATa)Tr(TaB)=12(Tr(AB)Tr(ATΩTBΩ)) \operatorname{Tr}(AT^a)\operatorname{Tr}(T^aB)= \frac 12\bigl(\operatorname{Tr}(AB)-\operatorname{Tr}(A^{\mathsf T}\Omega^{\mathsf T}B\Omega) \bigr) because (ΩTBΩ)ji=s(i)s(j)Bȷ~ı~(\Omega^{\mathsf T} B\Omega)^i_j=s(i)s(j)B^{\tilde \imath}_{\tilde \jmath} . Especially, if A=Ta1TakA=T^{a_1}\cdots T^{a_k} , then Tr(ATa)Tr(TaB)=12(Tr(AB)(1)kTr(ArevB)), \operatorname{Tr}(AT^a)\operatorname{Tr}(T^aB)= \frac 12\bigl(\operatorname{Tr}(AB)-(-1)^k\operatorname{Tr}(A_{\text{rev}}B)\bigr), where Arev=TakTa1A_{\text{rev}}=T^{a_k}\cdots T^{a_1} . Now take B=INB=I_N , since Tr(Ta)=0\operatorname{Tr}(T^a)=0 , Tr(A)=(1)kTr(Arev). \operatorname{Tr}(A)=(-1)^k\operatorname{Tr}(A_{\text{rev}}). It’s also true in the case of su(N)\mathfrak{su}(N) .

When calculating Feynman diagrams in the usual Yang-Mills theory, we use 3-point vertexs with coefficients fabcf^{abc} and 4-point vertexs to build the gluon amplitude, where fabcf^{abc} is the structure constant of the (semi-simple) gauge group. It can be calculated by the following formula fabc=i2Tr([Ta,Tb]Tc) f^{abc}=\frac{-i}{\sqrt 2}\operatorname{Tr}([T^a,T^b]T^c) in our basis. Therefore, for sp(2N)\mathfrak{sp}(2N) gauge field theory, in the calculation of tree level gluon amplitude, the following formula is fundamental: fa1a2aˉfaˉa3a4=(i)22Tr([Ta1,Ta2]Taˉ)Tr(Taˉ[Ta3,Ta4])=(i)24(Tr([Ta1,Ta2][Ta3,Ta4])(1)2Tr([Ta1,Ta2]rev[Ta3,Ta4]))=(i)24(Tr([Ta1,Ta2][Ta3,Ta4])Tr([Ta2,Ta1][Ta3,Ta4]))=(i)22Tr([Ta1,Ta2][Ta3,Ta4]). \begin{aligned} f^{a_1a_2\bar a}f^{\bar a a_3 a_4} &=\frac{(-i)^2}{2}\operatorname{Tr}([T^{a_1},T^{a_2}]T^{\bar a})\operatorname{Tr}(T^{\bar a}[T^{a_3},T^{a_4}])\\ &=\frac{(-i)^2}{4}\bigl(\operatorname{Tr}([T^{a_1},T^{a_2}][T^{a_3},T^{a_4}])-(-1)^2 \operatorname{Tr}([T^{a_1},T^{a_2}]_{\text{rev}}[T^{a_3},T^{a_4}])\bigr)\\ &=\frac{(-i)^2}{4}\bigl(\operatorname{Tr}([T^{a_1},T^{a_2}][T^{a_3},T^{a_4}])- \operatorname{Tr}([T^{a_2},T^{a_1}][T^{a_3},T^{a_4}])\bigr)\\ &=\frac{(-i)^2}{2}\operatorname{Tr}([T^{a_1},T^{a_2}][T^{a_3},T^{a_4}]). \end{aligned} Similarly, we can calculate that fa1a2aˉfaˉa3bˉfbˉa4a5=(i2)3Tr([[Ta1,Ta2],Ta3][Ta4,Ta5]) f^{a_1a_2\bar a}f^{\bar a a_3 \bar b}f^{\bar b a_4 a_5}= \left( \frac{-i}{\sqrt{2}} \right)^3\operatorname{Tr}\bigl([[T^{a_1},T^{a_2}],T^{a_3}][T^{a_4},T^{a_5}]\bigr) and so on. These expressions are both hold for su(N)\mathfrak{su}(N) and sp(2N)\mathfrak{sp}(2N) with the different meanings of generators TaT^a . Therefore, the color structure of sp(2N)\mathfrak{sp}(2N) gauge field theory is the same with su(N)\mathfrak{su}(N) in the tree level. However, in the loop level, we may need to calculate fa1bˉaˉfaˉa3bˉf^{a_1\bar b\bar a}f^{\bar a a_3 \bar b} and others which are more complicated, these will be different in the case of su(N)\mathfrak{su}(N) .

Buwai Lee

Buwai Lee

交换图都不会画的魔法师